Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator
نویسندگان
چکیده
In this paper, we study the existence and uniqueness of solution (EUS) as well as Hyers-Ulam stability for a coupled system of FDEs in Caputo’s sense with nonlinear p-Laplacian operator. For this purpose, the suggested coupled system is transferred to an integral system with the help of four Green functions G1 (t, s), G1 (t, s), G2 (t, s), G2 (t, s). Then using topological degree theory and Leray-Schauder’s-type fixed point theorem, existence and uniqueness results are proved. An illustrative and expressive example is given as an application of the results.
منابع مشابه
Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملExistence and uniqueness of the solution for a general system of operator equations in $b-$metric spaces endowed with a graph
The purpose of this paper is to present some coupled fixed point results on a metric space endowed with two $b$-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian product of the given spaces endowed with directed graphs. Data dependence, well-posedness and Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existe...
متن کاملHyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales
This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem is used for obtaining existence and uniqueness of solutions. By means of abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish Hyers-Ulam stabi...
متن کاملUlam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition
In this paper, we investigate four different types of Ulam stability, i.e., Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of nonlinear implicit fractional differential equations with non-instantaneous integral impulses and nonlinear integral boundary condition. We also establish certain conditions fo...
متن کاملMittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation
In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.
متن کامل